logo

04 de diciembre - 07 de diciembre de 2025

Clasificación: Australasian B (CORE2023)Offline

Australasian Database Conference

Actualizado: 5 days ago
0.0 (0 Calificaciones)

Aún no hay seguidores.

Resumen General

The Australasian Database Conference (ADC) 2025 will be held in Sydney, Australia and Bali, Indonesia from December 4-7, 2025. It serves as a forum for researchers and practitioners to share the latest research progresses and novel applications of database systems, data management, data mining and data analytics.

Convocatoria

ADC 2025: Call for Papers - Research Track

The 36th edition of the Australasian Database Conference (ADC 2025) will be co-located in Sydney, Australia and Bali, Indonesia from 4–6 December 2025. This conference is an annual forum for sharing research advances and novel applications in database systems, data management, data mining, and data analytics.

Topics of Interest

Relevant topics include, but are not limited to:

  • Artificial intelligence in big data
  • Cloud, distributed, and parallel databases
  • Data cleaning and integration
  • Data preparation and discovery
  • Data mining and data analytics
  • Data platform internals
  • Data warehousing
  • Database integration
  • Database performance and tuning
  • High-dimensional and temporal data
  • Knowledge discovery
  • Machine learning methods for management of data
  • Mobile databases
  • Multimedia databases
  • Novel data management applications
  • Privacy and security in databases
  • Query processing and optimization
  • Recommendation systems
  • Social data management
  • Spatial data processing and management
  • Stream and sensor data management
  • Uncertain and probabilistic databases
  • Web databases

Contribution Types

  • Research and Industry Full Papers (12 pages)
  • Demonstration Papers (4 pages)

Submission Guidelines

  • Submitted papers must be original contributions and cannot be under review for any other forum.
  • Accepted papers will be published in the conference proceedings as a volume in Springer’s Lecture Notes in Computer Science series.
  • All submitted papers must be in English and conform to the formatting instructions for the Lecture Notes in Computer Science (LNCS).
  • The format style files are available at LNCS Authors Instructions Page.
  • Authors should consult Springer’s authors’ guidelines and use their proceedings templates, either for LaTeX or for Word, for the preparation of their papers.
  • Springer encourages authors to include their ORCIDs in their papers.
  • The corresponding author of each paper must complete and sign a Consent-to-Publish form.
  • Submitted files must be in PDF, with the following page limits:
    • 12 pages for research full papers
    • 4 pages for demonstration proposals
  • These limits encompass all figures and tables but do not include reference pages.
  • ADC follows single blind review, meaning that authors’ information must be included in the submission.

Important Dates

  • Submission Deadline: September 12, 2025 (23:59 AoE)
  • Author Notification: October 4, 2025
  • Camera-Ready Deadline: October 18, 2025 (23:59 AoE)

Submission

The submission of a paper should be regarded as an undertaking that, should the paper be accepted, at least one author will attend the conference in person to present the work.

The submission page is: https://cmt3.research.microsoft.com/ADC2025

Fechas Importantes

Fechas del Congreso

Conference Date

4 de diciembre de 20257 de diciembre de 2025

Envío

(Research Paper) Submission Deadline

12 de septiembre de 2025

(Shepherding Paper) Submission Deadline

12 de septiembre de 2025

(Encore Paper) Submission Deadline

1 de octubre de 2025

Notificación

(Research Paper) Author Notification

4 de octubre de 2025

(Shepherding Paper) Author Notification

4 de octubre de 2025

Versión Final

(Research Paper) Camera-Ready Deadline

18 de octubre de 2025

(Shepherding Paper) Camera-Ready Deadline

18 de octubre de 2025

Clasificación de la Fuente

Fuente: CORE2023

Clasificación: Australasian B

Campo de Investigación: Data management and data science

Mapa

Loading feedback section...